

Space Medicine Revisited

Contents

- Planning for human space missions, a threepronged approach
 - Human
 - System
 - Environment
- Confronting biomedical responses to space flight
 - Physiological response
 - Delivering medical care
- Advanced technologies for human support
- The International Space Station as a testbed

Human Space Missions

System^{Human} Environment

Strategic Framework.

...advance...knowledge

NASA's MISSION

...explore...space

...transfer...technology

Exploration and the ISS

Pillars of Biology

Medical Care Delivery in the Extreme Environments of Space

External Microgravity

System Human

Environment

Convection

Buoyancy

Sedimentation

Earth

Space

Gaseous Pillars · M16

HST · WFPC2

PRC95-44a · ST ScI OPO · November 2, 1995 J. Hester and P. Scowen (AZ State Univ.), NASA

Planetary Biology

INSPIRATION IS IMPORTANT

System Environment

The System is chosen to fulfill a function. This function includes mission objectives and crew protection.

- Life support
- Environmental control
- Radiation shielding
- Medical capability

Underlying research

Function

Fluids management
Materials research

Combustion science (fire suppression)

Gravitational biology (biomass production)

Biological interface

Performance

ystem Environment

luman

Performance parameters are chosen to optimize system and crew function.

- System performance parameters/limits
- Standard operating procedures
 - Vehicle/habitat operations
 - Maintenance procedures
 - Health risk minimization
 - Work/rest cycles

Design

Environment

Human

System design needs to accommodate constraints on available power; mass; and crew size, expertise, and availability.

- Miniaturization
- Autonomy
- Redundancy

Biologically-inspired technologies

- Accessibility
- Ease-of-use
- Emergency procedures

Human factors

Prerequisites for Human Survival in Extreme Environments

Environment <u>Life Support</u>

Arctic/Antarctic Clothing and Shelter

(convection)

Desert/Tropics Clothing and Shelter

(convection and radiation)

Mountain Supplement Oxygen

Saturation Diving Closed Environment

Space Closed Environment

Effects of Environmental Variables on Organ Systems

Nervous

- ✓ Pressure
- ✓ Gas Composition
- ✓ Gravity
- ✓ Temperature

Blood

- ✓ Gas Composition
- ✓ Gravity

Pulmonary

- ✓ Pressure
- ✓ Gas Composition
- ✓ Temperature
- **✓** Humidity

Circulatory

- ✓ Pressure
- ✓ Gas Composition
- ✓ Gravity
- ✓ Temperature
- ✓ Humidity

Muscle

✓ Gravity

Bone

- ✓ Pressure
- ✓ Gas Composition
- ✓ Gravity

NASA Science.

FROM Space

Programs

Use the space environment for research

- Physics
- Chemistry
- Biology
- Engineering

Understanding the role of

Gravity

dose

response

Enable safe human exploration

- Countermeasures
- Life support
- Medical care

Facilitate the commercial use of space

- Products
- Services

CONSEQUENCE OF FANTASY: BANKRUPTCY

Extreme Environments

Desert

Tropics

Underwater Habitats

Arctic and Antarctic

Low Earth Orbit

Moon

Deep Space

Common Characteristics of Space Analogs

- Remoteness/Isolation
- High Maintenance
- Mission Duration
- Limited Resupply
- Limited Communications
- Physical Danger
- No Immediate Access to Definitive Medical Care

- Circadian Cues
- Confined Space
- Cultural Differences
- Limited Power
- Autonomous Operations
- Psychosocial Factors
- Physiological Consequences

REENTRY G APOLLO SHUTTLE 1.2 GZ (17 MIN)

SLS-1 PRELIMINARY RESULTS

Flight and Post Flight
 O—O Preflight

CV CHANGES AS A FUNCTION OF POSTURE AND FLIGHT DURATION

HYDROSTATIC COLUMN EQUIVALENTS (ARTERIAL SIDE)

EKG FINDINGS AFTER 175 DAY FLIGHT

PARALLEL SWING DSO 0433

STIMULATION

20° ARCH/0.26 Hz

400 CM/SEC2/0.26 Hz

PREFLIGHT

POSTFLIGHT

Development,

Acute fluid shift to 0 g

Normal

Preflight

Loss of fluid and adaptation to 0 g

Acute recovery in 1g

Samples were collected to study fluid volume regulation mechanisms

UT SOUTHWESTERN MEDICAL CENTER

Spacelab Life Sciences - 1

Adaptation

Plasticity

Purkinje cell

morphology

Rapid changes in function and structure to high or low acceleration forces

Type of Response

Ataxia SMS Occular

Locomotion & head/gaze control

Interdisciplinary Approach,

...Processes...

Biological Experimentation

subcellular, cellular ... complex biological structures, processes, and development

Molecular Observations.

Training

System Human Environment

- Survival
- Mission-specific
- Experiments
- Medical skills

Countermeasures

Mechanism

Receptor Long chain Bone Plasticity adjustment myosin formation

Ataxia Fluid loss (2 L), Muscle fiber Reduction BP control shift & strength 1%/ month decrease

Traditional

- Exercise
- Nutrition
- Fluids
- Pharmacological supplements

Non-traditional

- Artificial gravity
- Intervention at genetic/molecular level

Manifestation

Medical Events

Cardiovascular adaptations

Dry skin, Erythema of face & hands, Excessive wax in ear, Fatigue, Foreign body in eye, Gastrointestinal discomfort, Musculoskeletal

Neurovestibular alterations changes, Nasal congestion/irritation, Psychiatric distress, Sleep disorders, Sleeplessness, Space motion sickness, Superficial injury, Surface burn to

Bone & muscle changes

Glossitis, Headache,
Heartburn/ gas, Hematoma,
Hemorrhoids, Injury/trauma,
Laryngitis, Infection/irritation, Acute

Metabolic/ hormonal shifts

Arrhythmia, Bruise, Conjunctivitis, Contact dermatitis, Contusion of eyeball, Dental caries

Mean Values by Age (Cross-Sectional Data)

Thyroxine (T4)

Mean Values by Age (Cross-sectional data, 1991-1998)

Thyroid Stimulating Hormone (TSH)

Mean Values by Age (Cross-sectional data, 1991-1998)

Ratio of Total to HDL Cholesterol

Mean Values by Age (Cross-Sectional Data)

LSAH-Population.

	Total	Living	Deceased
Astronauts	295		
Males	255	229	26
Females	40	39	1
Comparisons	909		
Males	778	764	14
Females	131	131	0

Current Age Distribution.

	Astronauts		Comparisons	
Age Group	Men	Women	Men	Women
< 35	32	4	54	12
35-39	32	12	115	39
40-44	51	11	141	37
45-49	40	8	88	18
50-54	25	4	59	25
55-59	21	1	108	0
60-64	18	0	138	0
65+	27	0	52	0

Mortality.

Total	Astronauts 27	Comparisons 14
Spacecraft Accidents	8	0
Other Accidents	11	2
Cancer	4	3
CVD/CHD	3	6
Other Conditions	1	3

Astronaut and Comparison Group Physical Examination Parameters

- Thyroid Stimulating Hormone(TSH)
- Tri-iodothyronine (T3)
- Thyroxine (T4)
- Sitting Blood Pressure / Pulse Pressure
- Body Mass Index (BMI) / Total Body Fat
- VO2 Max
- Hemoglobin
- Triglyceride
- Cholesterol/ HDL Cholesterol
- Intraocular Pressure
- Hearing, Right Ear at 1000 Hertz and 6000 Hertz

Bone Response,

Internal Psychosocial Elements

System Human

Environment

- Confinement
- **Multicultural factors**

System **Human**

Physical Examinations

- Types of examinations
 - Selection
 - Retention
 - Pre-flight
 - Post-flight
 - Post-retirement

- Components of examinations
 - Physical exam
 - Laboratory analysis
 - Imaging
 - Special studies

Longitudinal Study of Astronaut Health